mpirun

Pages: 12
When I was building this package I enabled the MPI. It doesn't mean that enabling MPI actually triggers ML_MPI? Having this package working was very difficult. In every single step there is a problem. you fix one another one comes.
@lastchance
I changed the code like bellow and now It's working. Thanks for your time and help.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
#include <math.h>
#include <iostream>
#include "ml_include.h"
#ifdef ML_MPI
#include "mpi.h"
#endif
extern int Poisson_getrow(ML_Operator* mat_in, int N_requested_rows, int requested_rows[],
    int allocated_space, int columns[], double values[], int row_lengths[]);
extern int Poisson_matvec(ML_Operator* mat_in, int in_length, double p[], int out_length,
    double ap[]);
extern int Poisson_comm(double x[], void* A_data);
extern int send_msg(char* send_buffer, int length, int neighbor);
extern int recv_msg(char* recv_buffer, int length, int neighbor, USR_REQ* request);
extern int post_msg(char* recv_buffer, int length, int neighbor, USR_REQ* request);

int main(int argc, char* argv[]) {
    ML* ml_object;
    int i, N_grids = 3, N_levels;
    double sol[5], rhs[5];
    ML_Aggregate* agg_object;
    int proc, nlocal, nlocal_allcolumns;
    MPI_Init(&argc, &argv);
    ML_Set_PrintLevel(15);
    for (i = 0; i < 5; i++) sol[i] = 0.;
    for (i = 0; i < 5; i++) rhs[i] = 2.;
    ML_Create(&ml_object, N_grids);
    proc = ml_object->comm->ML_mypid;
    std::cout << "num_procs" << proc << std::endl;
    if (ml_object->comm->ML_nprocs != 2) {
        if (proc == 0) printf("Must be run on two processors\n");
        ML_Destroy(&ml_object);
        MPI_Finalize();
        exit(1);
    }
    if (proc == 0) { nlocal = 2; nlocal_allcolumns = 4; }
    else if (proc == 1) { nlocal = 3; nlocal_allcolumns = 5; }
    else { nlocal = 0; nlocal_allcolumns = 0; }
    ML_Init_Amatrix(ml_object, 0, nlocal, nlocal, &proc);
    ML_Set_Amatrix_Getrow(ml_object, 0, Poisson_getrow, Poisson_comm,
        nlocal_allcolumns);
    ML_Set_Amatrix_Matvec(ml_object, 0, Poisson_matvec);
    ML_Aggregate_Create(&agg_object);
    ML_Aggregate_Set_MaxCoarseSize(agg_object, 1);
    N_levels = ML_Gen_MGHierarchy_UsingAggregation(ml_object, 0,
        ML_INCREASING, agg_object);
    ML_Gen_Smoother_Jacobi(ml_object, ML_ALL_LEVELS, ML_PRESMOOTHER, 1, ML_DEFAULT);
    ML_Gen_Solver(ml_object, ML_MGV, 0, N_levels - 1);
    ML_Iterate(ml_object, sol, rhs);
    if (proc == 0) {
        printf("sol(0) = %e\n", sol[1]);
        fflush(stdout);
    }
    ML_Comm_GsumInt(ml_object->comm, 1);    /* just used for synchronization */
    if (proc == 1) {
        printf("sol(1) = %e\n", sol[0]);
        printf("sol(2) = %e\n", sol[1]);
        printf("sol(3) = %e\n", sol[2]);
        fflush(stdout);
    }
    ML_Comm_GsumInt(ml_object->comm, 1);    /* just used for synchronization */
    if (proc == 0) {
        printf("sol(4) = %e\n", sol[0]);
        fflush(stdout);
    }
    ML_Aggregate_Destroy(&agg_object);
    ML_Destroy(&ml_object);
#ifdef ML_MPI
    MPI_Finalize();
#endif
    exit(EXIT_SUCCESS);
}
/* Application specific getrow. */
int Poisson_getrow(ML_Operator* mat_in, int N_requested_rows, int requested_rows[],
    int allocated_space, int cols[], double values[], int row_lengths[])
{
    int m = 0, i, row, proc, * itemp, start;
    itemp = (int*)ML_Get_MyGetrowData(mat_in);
    proc = *itemp;
    for (i = 0; i < N_requested_rows; i++) {
        row = requested_rows[i];
        if (allocated_space < m + 3) return(0);
        values[m] = 2; values[m + 1] = -1; values[m + 2] = -1;
        start = m;
        if (proc == 0) {
            if (row == 0) { cols[m++] = 0; cols[m++] = 2; }
            if (row == 1) { cols[m++] = 1; cols[m++] = 3; }
        }
        if (proc == 1) {
            if (row == 0) { cols[m++] = 0; cols[m++] = 1; cols[m++] = 4; }
            if (row == 1) { cols[m++] = 1; cols[m++] = 0; cols[m++] = 2; }
            if (row == 2) { cols[m++] = 2; cols[m++] = 1; cols[m++] = 3; }
        }
        row_lengths[i] = m - start;
    }
    return(1);
}
/* Application specific matrix-vector product. */
int Poisson_matvec(ML_Operator* mat_in, int in_length, double p[], int out_length,
    double ap[])
{
    int i, proc, * itemp;
    double new_p[5];
    itemp = (int*)ML_Get_MyMatvecData(mat_in);
    proc = *itemp;
    for (i = 0; i < in_length; i++) new_p[i] = p[i];
    Poisson_comm(new_p, &proc);
    for (i = 0; i < out_length; i++) ap[i] = 2. * new_p[i];
    if (proc == 0) {
        ap[0] -= new_p[2];
        ap[1] -= new_p[3];
    }
    if (proc == 1) {
        ap[0] -= new_p[1]; ap[0] -= new_p[4];
        ap[1] -= new_p[2]; ap[1] -= new_p[0];
        ap[2] -= new_p[3]; ap[2] -= new_p[1];
    }
    return 0;
}
/* Communication routine that should be performed before doing a matvec */
/* See ML Guide.                                                        */
int Poisson_comm(double x[], void* A_data)
{
    int    proc, neighbor, length, * itemp;
    double send_buffer[2], recv_buffer[2];
    MPI_Request request;
    itemp = (int*)A_data;
    proc = *itemp;
    length = 2;
    if (proc == 0) {
        neighbor = 1;
        send_buffer[0] = x[0]; send_buffer[1] = x[1];
        post_msg((char*)recv_buffer, length, neighbor, &request);
        send_msg((char*)send_buffer, length, neighbor);
        recv_msg((char*)recv_buffer, length, neighbor, &request);
        x[2] = recv_buffer[1]; x[3] = recv_buffer[0];
    }
    else {
        neighbor = 0;
        send_buffer[0] = x[0]; send_buffer[1] = x[2];
        post_msg((char*)recv_buffer, length, neighbor, &request);
        send_msg((char*)send_buffer, length, neighbor);
        recv_msg((char*)recv_buffer, length, neighbor, &request);
        x[3] = recv_buffer[1]; x[4] = recv_buffer[0];
    }
    return 0;
}
/* Simple communication wrappers for use with MPI */
int send_msg(char* send_buffer, int length, int neighbor)
{
    ML_Comm_Send(send_buffer, length * sizeof(double), neighbor, 123,
        MPI_COMM_WORLD);
    return 0;
}
int recv_msg(char* recv_buffer, int length, int neighbor, USR_REQ* request)
{
    MPI_Status status;
    MPI_Wait(request, &status);
    return 0;
}
int post_msg(char* recv_buffer, int length, int neighbor, USR_REQ* request)
{
    int type = 123;
    ML_Comm_Irecv(recv_buffer, length * sizeof(double), &neighbor,
        &type, MPI_COMM_WORLD, request);
    return 0;
}
//#else
//int main(int argc, char* argv[])
//{
//    printf("In order to use this example, you must configure with the option\n--with-mpi-compilers=full_path_to_your_mpi_compilers and recompile.\n");
//    /* returns ok not to break the test harness */
//    return(EXIT_SUCCESS);
//}
//#endif /* ifdef ML_MPI */ 
It doesn't mean that enabling MPI actually triggers ML_MPI?

I have no idea how ML_MPI is set, because I don't use this software. (I usually write my own matrix solvers.) But however it is done ... it needs to be set when you build that package.
Yes, it needs to be set when building the package. That's why I said when I enabled the MPI the program already knows it should work on MPI. Which solver do you suggest to solve a linear system of equations which is sparse. I'm looking for some block-box solver.
Last edited on
Topic archived. No new replies allowed.
Pages: 12