1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
//MLP.h
#pragma once
#include "Matrix.h"
#include <tuple>
template<typename T>
class MLP {
public:
std::vector<size_t> units_per_layer;
std::vector<Matrix<T>> bias_vectors;
std::vector<Matrix<T>> weight_matrices;
std::vector<Matrix<T>> activations;
std::vector<Matrix<T>> zs;
double lr = .002;
MLP(std::vector<size_t> units_per_layer):
units_per_layer(units_per_layer),
weight_matrices(),
bias_vectors(),
zs(),
activations()
{
for (size_t i = 0; i < units_per_layer.size() - 1; ++i) {
size_t in_channels{units_per_layer[i]};
size_t out_channels{units_per_layer[i+1]};
// initialize to random Gaussian
auto W = mtx<T>::randn(out_channels, in_channels);
weight_matrices.push_back(W);
auto b = mtx<T>::randn(out_channels, 1);
bias_vectors.push_back(b);
auto z = mtx<T>::randn(out_channels,1);
zs.push_back(z);
activations.resize(units_per_layer.size());
}
}
static inline auto sigmoid(double x) {
return 1.0 / (1 + exp(-x));
}
static inline auto d_sigmoid(double x){
return (x * (1 - x));
}
auto forward(Matrix<T> x) {
assert(std::get<0>(x.shape) == units_per_layer[0] && std::get<1>(x.shape));
activations[0] = x;
Matrix<T> prev(x);
for (int i = 0; i < units_per_layer.size() - 1; i++) {
Matrix<T> y = weight_matrices[i].matmul(prev);
y = y + bias_vectors[i];
y = y.apply_function(sigmoid);
activations[i+1] = y;
prev = y;
}
return prev;
}
std::tuple<std::vector<Matrix<T>>,std::vector<Matrix<T>>> backprop(Matrix<T> &target) {
assert(std::get<0>(target.shape) == units_per_layer.back());
// determine the simple error, error = target - output
Matrix<T> error = (target - activations.back());
Matrix<T> last_z = zs[zs.size()-1];
Matrix<T> last_z_transformed = last_z.apply_function(d_sigmoid);
Matrix<T> delta_L = error.multiply_elementwise(last_z_transformed);
//the weights and bias gradients
std::vector<Matrix<T>> nabla_w(weight_matrices.size());
std::vector<Matrix<T>> nabla_b(bias_vectors.size());
// backprop the error from output to input and step the weights
for(int i = weight_matrices.size() - 1; i > 0; i--) {
Matrix<T> z_transformed = zs[i].apply_function(d_sigmoid);
Matrix<T> w_transposed = weight_matrices[i].T();
// calculating error for previous layer
// ERROR IN THIS LINE; MATRICES ARE NOT OF EQUAL COLUMN/ROW DIMENSION
Matrix<T> delta_l = w_transposed.matmul(delta_L).multiply_elementwise(z_transformed);
// calculating the change of weights and biases
Matrix<T> a_transposed = activations[i].T();
nabla_w[i] = delta_l.matmul(a_transposed);
nabla_b[i] = delta_l;
// updating the error term delta
delta_L = delta_l;
}
return std::tuple<std::vector<Matrix<T>>,std::vector<Matrix<T>>>(nabla_w,nabla_b);
}
void online_GD(Matrix<T> x, Matrix<T> y){
forward(x);
update_parameters(&backprop(y),1.0);
}
void update_parameters(std::tuple<std::vector<Matrix<T>>,std::vector<Matrix<T>>> ¶ms, double batch_size){
for (int i = weight_matrices.size()-1; i > 0; i--){
Matrix<T> nabla_w_scaled = std::get<0>(params)[i].multiply_scalar(lr/batch_size);
Matrix<T> nabla_b_scaled = std::get<1>(params)[i].multiply_scalar(lr/batch_size);
weight_matrices[i] = weight_matrices[i] - nabla_w_scaled;
bias_vectors[i] = bias_vectors[i] - nabla_b_scaled;
}
}
};
//Main.cpp
#include "Matrix.h"
#include "MLP.h"
#include <vector>
#include <iostream>
#include <fstream>
#include <math.h>
template<typename T>
void log (std::ostream& file, const Matrix<T>& x, const Matrix<T>& y, const Matrix<T>& y_hat) {
file << x;
file << y;
file << y_hat;
file << "------------" << std::endl;
}
int main() {
// init model
std::vector<size_t> layers = {1,8,8,8,1};
// open file to save loss, x, y, and model(x)
std::ofstream my_file;
my_file.open ("data.txt");
int max_iter{1};
const double PI {3.14159};
MLP<double> model(layers);
std::cout << model.bias_vectors[0];
for (int i = 0; i < max_iter; i++){
auto x = mtx<double>::randn(1, 1).multiply_scalar(PI);
auto y = x.apply_function([](double v) -> double { return sin(v) * sin(v); });
// forward and backward
auto y_hat = model.forward(x);
auto weights_biases = model.backprop(y);
model.update_parameters(weights_biases,1.0); // loss and grads computed in here
log<double>(my_file,x,y,y_hat);
}
my_file.close();
}
|